Crouzeix-Velte decompositions for higher-order finite elements

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic multigrid for higher-order finite elements

Two related approaches for solving linear systems that arise from a higher-order finite element discretization of elliptic partial differential equations are described. The first approach explores direct application of an algebraic-based multigrid method (AMG) to iteratively solve the linear systems that result from higher-order discretizations. While the choice of basis used on the discretizat...

متن کامل

Higher - Order Finite Elements on Pyramids

We present a construction of high order finite elements for H1, H(curl), H(div) (and L2) on a pyramid, which are compatible with existing tetrahedral and hexahedral high order finite elements and satisfy the commuting diagram property.

متن کامل

Geodesic Finite Elements of Higher Order

We generalize geodesic finite elements to obtain spaces of higher approximation order. Our approach uses a Riemannian center of mass with a signed measure. We prove well-definedness of this new center of mass under suitable conditions. As a side product we can define geodesic finite elements for non-simplex reference elements such as cubes and prisms. We prove smoothness of the interpolation fu...

متن کامل

Discrete maximum principle for higher-order finite elements in 1D

We formulate a sufficient condition on the mesh under which we prove the discrete maximum principle (DMP) for the one-dimensional Poisson equation with Dirichlet boundary conditions discretized by the hp-FEM. The DMP holds if a relative length of every element K in the mesh is bounded by a value H∗ rel(p) ∈ [0.9, 1], where p ≥ 1 is the polynomial degree of the element K. The values H∗ rel(p) ar...

متن کامل

Concepts for higher order finite elements on sparse grids

On the way to an efficient implementation of finite element algorithms related to the pand h-p-versions on sparse grids, we present a general concept for the construction of hierarchical bases of higher order suitable for sparse grid methods. For the solution of partial differential equations, this approach allows us to profit both from the efficiency of sparse grid discretizations and from the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2006

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2005.10.011